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Abstract—A theoretical analysis of vapor bubble growth in a uniformly superheated liquid has been
carried out to determine the effects of translational motion of the bubble on the bubble growth rate.
Assuming potential flow in the region surrounding the bubble the appropriate convective diffusion
equation is solved by means of a new similarity transformation. The results of the theoretical analysis
are compared with available experimental data and with analyses of the limiting cases of no bubble transla-
tion and quasi steady state bubble growth. The analysis is shown to reduce to the Plesset and Zwick or
Scriven analysis for stationary growing bubbles. The effects of translation are found to be significant
when the translational velocity is sufficiently high at moderate Jakob numbers, but for high Jakob num-
bers radial convection predominates and translation has little effect on the growth rates. The analysis
predicts results in good agreement with experimental data available in the literature.

Cl’ C2,

NOMENCLATURE
coefficient in equation (33);
= U,/R, variable in several equa-
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radial position [cm];

bubble radius [cm] ;

dummy variable of integration;
time [s];

temperature [°C];

= 3U ,t/2R, dimensionless time ;
radial velocity [cm/s] ;

tangential velocity [cm/s] ;
translational velocity of center of
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thermal diffusivity [cm?/s] ;
growth constants;

thermal boundary layer thickness
[em];

= §?, variable in several equations
[em?];

similarity variable;

angle [radians] ;
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A, heat of vaporization [cal/g] ;
v, kinematic viscosity [cm?/s]
£, dummy variable of integration;
P density [g/cm?];
a, surface tension [dynes/cm];
T, time [s]:
P, function defined by equation (24);
w, function in equation (34) and tabu-
lated in [11].
Subscripts
L, refers to the liquid phase;
s, refers to a saturation condition ;
0, refers to an initial condition
vV, refers to the vapor phase;
0, refers to a value at great distance
from the bubble.
INTRODUCTION

ProsLEMS of bubble growth in a superheated (or
supersaturated) liquid, for the case involving no
translational motion of the center of the fluid
sphere relative to the surrounding continuous
phase, have been studied by Plesset and Zwick
[1,2],Forster and Zuber [3], Scriven [4], Barlow
and Langlois [5] and Waldman and Houghton
[6]. In 1966 Goodrich [7] provided yet another
analysis of the phase growth problem, and
Bankoff [8] analyzed and reviewed the literature
related to these problems. It can be concluded
that diffusion-controlled bubble and droplet
growth is reasonably well treated provided that
the spherical fluid mass does not undergo
translation.

As indicated by Sideman’s summary [9] of
transfer coefficient equations for moving but
nongrowing droplets a considerable amount of
work has been done related to constant volume
drops. Most of the research on transfer co-
efficients for the region outside of a drop of
constant size is restricted to steady state condi-
tions, but Ruckenstein [10] proposed a method,
based on a new similarity transformation, for
the analysis of some problems of heat or mass
transfer under unsteady conditions. The method
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was applied to a moving fluid spherical bubble
of constant size by Ruckenstein [11], and
Ruckenstein and Constantinescu [12] applied
it to solve the problem of mass transfer to a drop
growing at the tip of a capillary tube through
which liquid is fed to the drop.

Perhaps the first attempt at a fundamental
analysis of the problem of simultaneous transla-
tion and diffusion-controlled bubble growth or
collapse is that of Tokuda et al. [13]. Using a
potential flow model for the flow field around
the bubble hey developed small-time and large-
time expressions for the growth rate which they
solved numerically to obtain the radius as a
function of time. They found that translation
greatly increases growth rates over those pre-
dicted for stationary growing bubbles.

It is the purpose of the present paper to show
that a similarity transformation of the type
proposed in [10] and [11] may be useful in the
analysis of diffusion-controlled moving bubble
growth.

PROBLEM FORMULATION

We shall consider the growth of a translating
spherical vapor bubble in a single-component
uniformly superheated liquid of great extent
compared with the volume of the bubble. When
a vapor bubble is generated at a heated wall,
such as occurs in nucleate boiling, simultaneous
translation and growth (or collapse) occur after
the bubble departs. Vapor bubble growth arising
from homogeneous nucleation has been studied
by Dergarabedian [14], Hooper and Abdel-
messih [15], Kosky [16] and Florschuetz et al.
[17]. Dergarabedian generated vapor bubbles
in the bulk of slightly superheated water by
infrared heating, and the latter investigators
generated bubbles by suddenly reducing the
pressure on water initially at a uniform tempera-
ture. All of these investigators reported bubble
radii as a function of time and were primarily
interested in radial growth rates. With the
exception of Florschuetz et al. the authors
largely ignored the possible effects of translation
in their interpretation and analysis, but because
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of the buoyant force acting on a bubble transla-
tion occurs if the bubble is not attached to a
solid surface of support.

The experiments of Florschuetz et al. were
designed to assess the effects of translation on
the growth rates of free vapor bubbles in uni-
formly superheated liquids. Using a drop tower
they made measurements under zero gravity
conditions as well as under normal conditions.
Their results clearly indicate that bubble transla-
tion has an appreciable effect on growth rates.

Darby [18] measured vapor bubble growth
rates for moving bubbles following detachment
after heterogeneous nucleation on a solid surface.
As in Dergarabedian’s study superheated liquid
was maintained by infrared heating. The data
show some evidence that translation increases
the growth rate, and Darby correlated his data
for water and Freon 113 by means of an empirical
equation,

It should be noted that, except for the large
vapor slugs developed at large times in Kosky’s
experiments and for some of the larger bubbles
in the normal condition runs of Florschuetz and
his coworkers, spherical bubbles were involved
in all of the experimental investigations.

If it is assumed that at time t = 0 a spherical
vapor bubble is either injected into a uniformly
superheated liquid or begins to grow in the
liquid due to a sudden decrease of pressure on
the system, then rises through the superheated
liquid, the temperature field around the bubble
satisfies the energy equation

T, , 0T UsdT
ot " or r 00

(1

The temperature field is considered to be
axisymmetric and molecular conduction in the
direction tangent to the bubble surface is
assumed to be negligible compared with the
convective transport in that direction. For
sufficiently large Péclét numbers the thickness

oT
E + |:<1
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of the region in which all appreciable variation
of temperature occurs is small and equation (1)
may be approximated by

5_T+ oT anT aazT
ot or | r 00 or?’

The boundary conditions and the initial
condition are

@)

i) T=T, as r—ow
(i) T=T, at r=R
(i) T=T, at t=0

Boundary condition (ii) arises by assuming that
the interior of the bubble is at the saturation
temperature.

If the center of the bubble moves at velocity
U, relative to stationary coordinates and the
flow field around the bubble is approximated by
potential flow, the velocity components are
given by

3 R2dR
Uu,=-U, (1 I: )cos@-i—

2 de 3)

R3

Upg=U, <1+2 )sme 4)

Since we are interested in the temperature
distribution in the region near the bubble surface,
ie. y < R where y = r — R, the velocity com-
ponents in this region can be approximated by
expanding the radius-dependent terms in y/R
to give, for small y/R

¥ dR 2y)

U, = -3U, —(1-=2

. cos9+ & ( R 5
Uy 33U,
T TR Y ©

Introducing these velocity expressions in the
convective diffusion equation, equation (2), one

obtains
2y\ dR y oT
) g ~3Ueg© SGJ‘a:

oT o’T
=2y )
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In addition to the boundary conditions and
the initial condition discussed above the radius
must satisfy the relation between the bubble wall
velocity dR/dt and the rate of heat transfer to the
bubble obtained by writing an energy balance
on the bubble surface, i.e.

dR k oT .
'&‘ = —*—2pvi g (5;)):0 sin 6 dO (8)
4]

with initial condition R = Rgatt = ¢,.

SOLUTION
Introducing new variables y =r — R and
1 = t, equation (7) transforms to

oT 2dR
5{-——y<3Ac sO+Rd )
3 . oT o*T
+§ASID9%-— ag;z‘ (9)

where A = A(t) = U (R)/R. It is assumed that
the bubble rise velocity U, is a function only
of the bubble radius and the physical properties
of the system.

Equation (9) can be solved by the method
proposed by Ruckenstein [10], introducing the
similarity variable

n = y/0,1)

and assuming that T = T(n).
transforms to

Equation (9)

d2T dT 1 062 2
ad—nz (2 o + 3 A d%cos O
3 2)
2 _- 1
+ 2B +4Asm969 0 (10)
where
1dR

B=Bo=.

If the temperature is to be a function of # only,
the term in brackets in equation (10) can be set
equal to a constant. A convenient choice of the
constant is 2o and this choice leads to the
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following equations that must be solved to
obtain the temperature distribution.

dar dr

dAﬂz + ?’[-a—’; =0 (11)
and
de
= + (6 Acos 6 + 4B)e
ot

+ 3Asm 9t — (12)
-

where ¢ = §2.

The boundary conditions become

Q) T=T, as n-o
G) T=T, atn=0.

The well-known solution of equation (11) is
T—
T. - T

= erfc [y/8(6, 7)]. (13)

Equation (12) can be solved by using the
method of characteristics. The characteristic
system of equations which may be attached to it
is

dr dé _ de
1 3Asinf 4o — (6 Acosf + 4B)e’

(14)

The pair of equations obtained from the
characteristic system is

3 do
and
de
0 [6A(t) cos 8 + 4B(1)]e = 4a.  (16)
The solution of equation (15)is
[ 2
C, + JA(S) ds = gln tan (6,2). (17)

To solve equation (16) it is first necessary to
express cos 8 as a function of r and C, by means
of equation (17). This is done by using the
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trigonometricidentity
1 — tan?(0/2)
1 + tan?(0,2)

and by eliminating tan 6/2 between equations (17) and (18). Substituting the resulting expression
for cos # in equation (16) and integrating one obtains.

soxp {S[M(é)l —exp [3C, + 3fA(s)ds] N 4B(£)]dé} _
1+ exp[3C, + 3fA(s)ds]

cosf = (18)

T

C, + 4a§exp{g[6A(é)1 —exp [3C, +3 -EA(s)ds] + 4B(§)]d€}dp. (19)
1 + exp [3C; + 3fA(s)ds]

The general solution of equation (12) has the form C, = F(C,). Consequently we can rewrite
equation (19), using equations (17) and (18), to give

T

1 —(tan?8,2exp (3 fA(s)ds)
£ exp{ S |:6A(€) 2 + 4B(f)] dé } -
1 +(tan%6/2exp (3 f A(s)ds)

H £ 1 —(tan26/2exp (3 f A(s)ds)
4o Sexp{S [6A(5) f + 4B(é)] dé} dp =

1 +(tan20/2exp (3 | A(s)ds)

FGlntan6/2 — [ As)s).  (20)

The form of the function F will be determined by using the initial condition, ¢ = 0 at 7 = 0. This
yields

]
FGIntan 6/2 — [ A(s)ds) =

9 4 1 —(tan?0/2exp (3 ? A(s)ds)

—4 jexp{J [6A(€) 2 + 43(5)] d{} dp. (21)
1 +(tan20/2exp (3 f A(s)ds)

(V]

Consequently,

FGIntan 6,2 — f A(s)ds) =
14

1 —(tan?0/2exp (3 f A(s)ds)
_4ajeXp{S[sA(g) < 4B(¢>] d«:}dp @2)
1 +(tan26/2exp (3 _fA(s)ds)
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and, finally

¢ = da g exp [ #(6. &, 1)d)dp

where
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4)(0’ c’ T) = 6A(é)

Thus the bubble growth rate dR/dz can be
obtained from the energy balance, equation (8),

(23)
1 —(tan?6/2exp (3 fA(s)ds)
2 + 4B(¢). (24)
1 +(tan20/2exp (3 | A(s)ds)
then
dR
sl

by differentiating equation (13), evaluating the
temperature gradient at r = R and substituting
the result in equation (8) to give

dR « {sinfdo
= Ny 25
a = \/(n)S\/ wo
0
where the Jakob number N, is defined by
N_,a = CL(TCD - T;)ﬁ, (26)

4 Pv

and ¢(6,7) is given by equation (23).

Integrating equation (25) one obtains the
equation for the bubble radius as a function of
time

Since U, = 0 we have A(z) = 0, and B(z) = 1/z.
Equation (25) can then be integrated analyti-
cally to give the result obtained by Plesset
and Zwick and by Scriven:

o)
T

a:c— =
from which one obtains the Plesset and Zwick
value of the growth constant

(30)

R(t) = R, + N;\/(%)y

i

B =JGB/m) Ny, (31)
sin 6 d6 dr. o7
’ ‘ 1 —(tan26,2)exp (3 f A(s)ds) +
Sepr [6A(é) s + 4B(¢)]d§}dp}
0 : 1 + (tan26,2)exp (3 | A(s)ds)

-

Equation (27) reduces to a much simpler and
well-known result when U, =0 and R, = 0.
In this case Scriven’s method of solution can be
used to determine the bubble radius and the
growth rate dR/dz analytically. Assuming

R = 2B,/(a1), (28)

It should be pointed out that when the initial
radius is nonzero owing to the nonlinear
character of the integral equation (27), the
solution of the equation does not have the
form suggested by intuition,

R = Ry + 2B /(o0). (32)
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Another type of solution, differing from that of
Scriven, must be found. Indeed, using equation
(32) for evaluating the integral in equation (25)
one obtains
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and about the relative importance of translation
compared with radial motion can be obtained
from equations (23) and (24). The thermal
boundary layer thickness decreases as the

(a + %)

dR —_ 13’ ? p— N E
dr t) 7\ ) [a*t + $a3tt + 3a%t? + Lact + (¥3)]

(33)

where a = Ro/2p'\/(#). Equation (33) invali-
dates the original assumption that p’ = con-
stant, except for very large times, for which the
equation reduces to ' = N,,./(3/m).

When U, # 0 the functions A4(¢) and B(¢),
which are functions of the bubble radius, depend
upon time in an unknown manner, so a numeri-
cal method is required to solve the nonlinear
integral equation, equation (27). An iterative
procedure involving a method of successive
approximations was used to solve the equation.
To obtain trial values of the radius for the
iterative numerical solution the approximation,

R = RO + 2Nla\/(3<11//71),

was used to begin computations. For later times
(after the first few time increments) rapid con-
vergence of the iteration scheme was achieved
by obtaining trial values of R for each new time
increment by linear extrapolation of the values
from two previously calculated increments.
Simpson’s rule was used in the numerical
integration schemes, and the effects of the sizes
of the time increment and the angle increment
were established. Solutions were found to be
quite insensitive to the size of the angle incre-
ment, but because of the multiple integrals
involved (with respect to time) the time incre-
ments required for accuracy and stability of
the calculations were of the order of 10~35-10~4
s for the results discussed below.

LIMITING CASES
Qualitative information about the time-
dependent thermal boundary layer thickness

function @0, &, 1), defined by equation (24)
as the sum of translational and radial convection
terms, increases. The radial growth is a function
of the Jakob number and the translational
convection can be associated with a Péclét
number (Np, = 3RU , 2a). An increase in either
of these terms will produce a thinning of the
thermal boundary layer.

If

1 — exp[3 T' A(s)ds)tan?6/2
4B(%) » 6A(%) 5 )
1 + exp[3| A(s)ds]tan?6,2

the effects of translation are insignificant, and
radial transport of heat predominates. Provided
that the Jakob number (and. therefore, the
growth rate) is sufficiently large that the thin
thermal boundary layer assumption is valid, the
solution reduces to that of Plesset and Zwick
asshown above.

When the translational convection term and
the radial convection term of ¢(9, £, 1) are of
the same order both modes of convection are
important, and the numerical solution discussed
above must be used to compute the results.

Tokuda, Yang and Clark came to the same
qualitative conclusions about the thickness of
the thermal boundary layer and the importance
of axial versus radial convection. By writing
the energy equation in a dimensionless form they
showed that the thickness of the time-dependent
thermal boundary layer depends upon the
Jakob number and the Péclét number, and they
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showed that when N, is of the order of N3, both
radial and axial convection terms are significant.
They proceeded to solve the original energy
equation by a perturbation technique and
obtained numerical results.

A third possibility exists concerning the rela-
tive magnitudes of the translational and radial
convection terms. When

—r

1 — exp[3{A(s)dsltan?0,2
6A(S) -

1 + exp[3

A(s)ds]tan?6,2

—y|

-

> 4B(¢),1.e. when Np, > Ny,

translational effects predominate, and the heat
flux at each moment should be given by that for
heat transfer to a bubble of constant size. pro-
vided that @8, &, 7) is sufficiently large that the
thin thermal boundary layer approximation is
valid. The growth rate should then be obtainable
by quasi steady state methods.

THE QUASI STEADY STATE APPROXIMATION

If it is assumed that at each moment of time
the heat transfer coefficient is given by expres-
sions valid for the corresponding constant
radius moving bubble, the heat transfer rate
may be obtained from previously developed
expressions [11]. For potential flow around a
constant size bubble the Nusselt number is
given by

Ny, = (Npym) (T (34)

where the Nusselt number is defined by
Ny. = 2hR/k, the heat transfer coefficient h is
defined in terms of the average heat flux g over
the bubble surface, ie. h = g(T, — T,), and
o(T*) is a time-dependent function calculated
in [11]. The Péclét number and the dimen-
sionless time T* are given by

Np,=3RU_ /¢ andT* = 3tU R

For T* » 1. o(T*) = 4;,/(3) and equation (34)
becomes

NNu = 4(NPe//3n)%- (35)

The bubble growth rate is obtained from an
energy balance on the bubble.

d -
&(PuﬂfﬂRﬂ = 4nR’KT, — T).  (36)
For constant vapor density and constant heat

of vaporization the growth rate equation be-
comes

dR N, <3<xU1 37)

—_ = *
dt 2 an> oT)

where  is a function of time and radius as
indicated above. If the translational velocity
is specified as a function of the radius, equation
(37) can be integrated numerically to give the
time-dependent radius.

THE TRANSLATIONAL VELOCITY

Inthe above analyses the translational velocity
is considered to be a function of the radius, but
no particular form of that functional relation-
ship has been specified. Any appropriate equa-
tion for the translational velocity or even
experimental data can be used in the numerical
solutions of equations (27) and (37). Three
different approaches are used for the calcula-
tions discussed below (i) a constant translational
velocity, (ii) experimental data and (iii) velocities
calculated for each point in time from well-
known expressions that rigorously apply to
nongrowing bubbles. In the latter case the
inertial terms that are ignored are probably
significant during a small-time period when the
bubbles grow most rapidly, but for simplicity
this complication is not taken into account
here.

Levich [19] analyzed the drag on a spherical
bubble. The analysis, which has recently been
extended by Harper and Moore [20], applies to
the motion of a constant radius bubble in an
uncontaminated liquid for bubble Reynolds
numbers greater than about 100. For bubbles
larger than approximately 0-04 cm, however,
Levich’s equation,

U, = gR?*9v. (38)
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predicts bubble rise velocities that are too high
compared with experimental data. A better
expression for larger bubbles is that of Mendel-

son [21],
p 3
Uy,=|5—+9gR)},
(RPL >

which Cole [22] has shown to be in reasonable
agreement with experimental data for steam
and organic vapor bubbles under nucleate
boiling conditions.

(39)

RESULTS
Quantitative information about the relative
importance of translation compared with radial
motion was obtained by making a parametric
study of the solution of equation (27). Figure 1

08l —.— Quas: steady state approx, ¢, =50 cm/s

==== Plesset and Zwick equation, 7 =0
orr Present analysis

Uy =0 (no translation)
—==— Ugp=30 cm/s 60

———— U250 cmss Wi, g7

o6

cm

Radius,

Time, ms
FiG. 1. The results of a parametric study of equation (27)
for water at 2 atm pressure.

shows the results of such a study for various
Jakob numbers and various constant transla-
tional velocities including the case of no
translation. The physical properties used in the
calculations correspond to steam and water at

947

a pressure of 2 atmospheres, and an initial
radius of 0-057 cm, the departure diameter for
steam bubbles from a solid surface at this pres-
sure, is assumed. The Plesset and Zwick or
Scriven asymptotic solution for stationary
bubbles. equation (28). (which we shall refer to as
the PZS solution) is plotted for the three Jakob
numbers shown. The other limit, quasi steady
state growth, is also shown on Fig. 1.

For large Jakob numbers (N;, > 50) and at
small times even relatively large translational
velocities (U, = 50 cm/s) have little effect on the
growth rate because radial convection pre-
dominates. The PZS solution is in good agree-
ment with the solutions for large Jakob num-
bers even though the initial radius was taken as
finite for the solution of equation (27). It is not
surprising that the quasi steady state approxi-
mation predicts lower growth rates for
U, = 50 cm/s and N,, = 50 than either equa-
tions (27) or (28), for the growth is dominated
by radial convection and translation is only
slightly significant in the time range shown in
Fig. 1.

The quasi steady state approximation is in
good agreement with the results of equation
(27) for U, = 50 cm/s and N, = 30. For these
conditions translational convection predomin-
ates. Again the PZS result is in good agreement
with the numerical solution of equation (27)
for the case of no translation.

The predicted growth curves for N, = 10
show a strong effect of translation, but the
quasi steady state solution for U, = 50 cm/s
and the results of equation (27) for that velocity
are not in agreement. Furthermore, because of
the relatively large initial radius the results
of equation (28), which applies only for zero
initial radius, are not in agreement with those of
equation (27).

Some caution must be exercised in applying
the present analysis to low Jakob numbers, for
the assumption of a thin thermal boundary
layer is questionable if the translational velocity
is also low. To examine this point sample results
for the function /4« from equation (23) corres-
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: [ ]
f

M Up=10 cm/s
| #,=10

S

€ (6,0/4ax10°

o] /2

Angle, radians

FIG. 2. The behavior of the thermal boundary layer thickness
for low Jakob number and low velocity.

ponding to the parametric studies of Fig. 1 are
shown in Fig. 2 for a combination of low Jakob
number and low translational velocity. Even at
small times the thermal boundary layer in the
rear half of the bubble is relatively large for
this extreme case. For the range of times shown
in the figure §/R < 0-04 at the front stagnation

02 T T T T 17T ] T T T T T T

= o  Darby's run '2

Present analy sis
o Ut (R)

F §go N
€ - 8 ]
° i / o§ % ! N
s 005 g%odj——ﬁf'*fﬂ—ﬂ
S
= 3" Departure ~
o
4 | 8 i)

Q

Q

13
0 02| 5§ <
o
D e |
®
o o | L L1l L | | I

0053 5 10 20 50 )

Time, sec

F1G. 3. A comparison of the present analysis with typical
data of Darby for water.
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point, so the thin thermal boundary layer
assumption is valid in this region, but at the rear
stagnation point d quickly becomes large. For
larger translational velocities with N,, = 10
the thickening of the thermal boundary layer
is less pronounced, but near § = = the validity
of the analysis is questionable. Even at higher
Jakob numbers & is large in the vicinity of 0 = 7,
but this region has very little effect on the solu-
tion as seen by examination of the integrand in
equation (27).

It is possible to obtain some information on
the usefulness of the present analysis for low
Jakob number systems by comparing it with
available experimental data. The data available
for simultaneously growing and translating
bubbles are in the low Jakob number range
(3 < N,, < 10). Darby provided data on both
the bubble radius as a function of time and the
position of the bubble as a function of time.
As the bubbles were nucleated on a solid surface
the experimental growth data prior to bubble
departure do not agree with the PZS solution.
The results for two of Darby’s runs are shown
in Figs. 3 and 4. and the growth curves predicted

005 I l I 7]

o Darby's run 2A 7e°
— Present analysis ©°
Un UTR) eroo
002
&

cm

Radius
[}
o
o
8
©g9
o
°© -]
o =]
1]

parture

0005 / o5

0002

2 = 10 20 50
Time, ms

FIG. 4. A comparison of the present analysis with typical
data of Darby for Freon 113.

from equation (27) are plotted on the figures.
The translational velocities used were those
obtained by curve-fitting the appropriate experi-
menta} data. The data for water, Fig. 3. show
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some effect of translation on the growth, but
the predictions from equation (27) deviate only
slightly from the PZS solution for stationary
growing bubbles. For Freon 113 the data show
(Fig. 4) little effect of translation and the results
predicted using equation (27) are nearly
indistinguishable from the PZS results,

The data of Florschuetz et al. are better
suited for comparison with the present analysis,
for their work involved homogeneous nucleation
in the bulk of a superheated liquid, so the
effects of solid boundaries and bubble departure
are absent. Unfortunately they did not supply
information on the bubble translational veloci-
ties as a function of time or of bubble radius, so
some conjecture about these velocities must be
made. They reported that the translational
velocities were in the range from 0 to 40 cm/s,
and therefore any assumptions made about the
translation must be consistent with the upper
limit of 40 cm/s.
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Florschuetz e o/ data

Piesset and Zwick or
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Uy from terminal
velocity expressions
U =0 for R< 012 cm .
equation (39) for >0 12 cm
L 1 1 1 1 1
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Time, ms

F1G. 5. A comparison of theoretical analyses with data for
water.

Figure 5 shows a comparison among the
results predicted with the present analysis (with
two different policies for calculating the transla-
tional velocity), the PZS analysis and experi-
mental data for steam bubbles of Florschuetz
et al. If equations (38) and (39) are used to
predict U, over the entire range of bubble sizes
the growth rate, Curve B, is considerably
overpredicted. It is likely that the calculated
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velocities are much too high in the early phase
of bubble growth. An alternate policy was to
assume that translation was not significant up
to a radius of 0-12 cm, and after that point U,
was calculated from equation (39). The result,
Curve C, is in reasonably good agreement with
the experimental data and the calculated veloci-
ties are in the range observed by Florschuetz
and his associates. Significant deviation from
the predictions for no translation, Curve A,
occurs.

Parametric studies based on the conditions
of Florschuetz et al. indicate that it is the velocity
attained after the first 20 or 30 ms that has an
appreciable effect on the bubble growth. Pro-
vided that the velocities calculated for the
smaller bubbles are not too large translation
has no effect on bubble growth at small times
(t < 20 ms). Furthermore, translational veloci-
ties less than about 20 c¢m/s have little effect
on the bubble growth at large times.
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FIG. 6. A comparison of the present analysis with data for
water.

Figures 6-8 compare experimental data for
water, ethanol and isopropanol, respectively,
with predictions made using a constant transla-
tional velocity of 30 cm/s in equation (27) for
t > 10 ms. The results of the PZS solution for
no translation are also plotted on the figures.
The velocity of 30 cm/s is well within the range of
translational velocities reported by the investi-
gators. The predictions are in reasonably good
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F1G. 7. A comparison of the present analysis with data for
ethanol.

agreement with the experimental data for all
three systems, and the deviations from the
theory for stationary phase growth are correctly
predicted. Similar results are obtained using
equation (39) to predict the translational
velocities after the first 10 ms.

To use the present analysis as a reliable
predictive theory it is necessary to have better
methods of predicting the translational velocity
of growing bubbles, but Mendelson’s equation,
equation (39), appears to be satisfactory for
larger bubbles.
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FIG. 8. A comparison of the present analysis with data for
isopropanol.

CONCLUSIONS
The effects of translation on diffusion-con-
trolled vapor bubble growth have been studied
by means of a new similarity solution of the

E. RUCKENSTEIN and E. JAMES DAVIS

convective diffusion equation. For sufficiently
large Jakob numbers (N, > 50) bubble growth
is not greatly affected by translation, for radial
convection predominates. For moderate Jakob
numbers translation can substantially increase
bubble growth rates over the rates predicted
for stationary bubble growth, for both tfansla-
tional and radial convection are important at
moderate translational velocities. If the velocity
of translation is sufficiently large bubble growth
characteristics can be predicted by quasi steady
state methods, and in the limit of no translation
and small initial bubble radius the new solution
reduces to the Plesset and Zwick or Scriven
solution for diffusion-controlled phase growth.
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LES EFFETS DE TRANSLATION DE BULLE SUR LA CROISSANCE DE BULLES DE
VAPEUR DANS UN LIQUIDE SURCHAUFFE

Résumé—Une analyse théorique de la croissance de bulle de vapeur dans un liquide uniformément
surchauffé a été menée pour déterminer les effets de mouvement de translation de la bulle sur sa vitesse de
croissance. En supposant un écoulement potentiel dans la région voisine de la bulle, 'équation appropriée
de diffusion convective est résolue a I'aid d’une nouvelle transformation de similitude. Les résultats de
Panalyse théorique sont comparés aux résultats expérimentaux utilisables et aux analyses des cas limites
de non-translation de la bulle et de croissance de la bulle en état quasi-stationnaire. On montre que ’analyse
se réduit & celles de Plesset et Zwick ou Scriven pouxdes bulles croissant stationnairement. On montre que
les effets de translation sont significatifs quand la vitesse de translation est suffisamment grande pour des
nombres de Jakob modérés mais pour des nombres de Jakob élevés la convection radiale prédomine, et la
translation a peu d’effet sur les vitesses de croissance. L’analyse prédit des résultats en bon accord avec
ceux expérimentaux utilisables dans la littérature.

DIE EFFEKTE DER TRANSLATIONSBEWEGUNG DER BLASEN AUF DAS
DAMPFBLASENWACHSTUM IN EINER UBERHITZTEN FLUSSIGKEIT

Zusammenfassung—FEine theoretische Ableitung des Dampfblasenwachstums in einer iiberhitzten Flis-
sigkeit ist durchgefithrt worden, um die Einfliisse der Translationsbewegung der Blasen auf die Blasen-
wachstumsraten zu bestimmen. Unter der Annahme einer Potentxalstmmung in der Umgebung der Blase
wird die zugehorige konvektive Diffusionsgleichung mit Hilfe einer neuen Ahnlichkeitstransformation
geldst. Die Ergebnisse der theoretischen Ableitung werden mit den vorhandenen experimentellen Daten
und mit den Ableitungen der Grenzfille nimlich keine Blasentranslation und quasistationdres Blasen-
wachstum verglichen. Die Ableitung lisst sich auf die von Plesset und Zwick oder Scriven angegebene
Analyse fir das stationdre Blasenwachstum zuriickfiihren. Die Einfliisse der Translation sind bedeutend,
wenn die Translationsgeschwindigkeit bei mittleren Jakob-Zahlen gross ist; bei grossen Jakob-Zahlen
itberwiegt jedoch die radiale Konvektion und die Translation hat nur einen geringen Einfluss auf die
Wachstumsraten. Die Ableitung liefert Ergebnisse von guter Ubereinstimmung mit den vorhandenen
experimentellen Daten aus der Literatur.

BJIUAHUE NOCTVIIATEJBHOTO ABMMKEHHMA NY3BIPBKOB INAPA HA
X POCT B IIEPETPETON KUOKOCTH

Annoranua—IIpoBogurca TeopeTutecKut aHANN3 POCTA NAPOBHX NYSHPLKOB B PABHOMEPHO
meperpeToli KMAKOCTH C I€JIbI0 ONpefelleHMA BIMAHHUA NOCTYNATENBHOTO [IBUMKEHUA
My3BIPBKOB HA CKOPOCTh UX pocra. COOTBeTCTBYIOIINE YPABHEHUA KOHBEeKTMBHOH puddysnn
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pelialTcA ¢ INOMOWILI0 HOBOIO «BTOMOEJBHOTO 11peoGpasoBatig  Mpil OUYIHEHIN o
CYIECTBOBAHMH IIOTEHIMAJLHOIONOTOKA BOINAH Ty3sipbKa. PeaynbraTel TeopeTnyeckoro
AaHAJIN3a CPABHHBAIOTCA ¢ ONYyGJIMKOBAHHBIMHM DRCIEPHMEHTANILHBIMHI JAHHBIMI, & TAKKEe ¢
AHTMTHYCCKIMU PellleHHAMU HJIA NpefelbHBIX CAVUAeB OTCYTCTBUA IBUMAKEHNA OY3hIPbKA U
KBa3HCTALMOHAPHOTV pocTa nyswipeil. [lokaszano, 4To RIA CTAIMOHAPIOTO POCTAa NYBHIpeil
aHagus crogurcA K ananusy Ilmecce u 1lBnka unn CrpiiBena, YCTaHOBJIEHO, UTO BINAHIE
MOCTYNATEAbHOT0 ABHMKEINA CYIIECTBCHHO, KOTJA eTr0 CKOPOCTh JOCTATOUNO BeJHKA [pH
ymepennsix umcnax flkofa; npn Goapwux ke uncaax flkoGa npeoGmagaer paghadsnan
KOHBEKI[MA, a TIOCTYIaTeNbHOe [BHMKeHIe He OKa3BIBAST 3HAUUTEAbHOTO BJIMHIIUA 1A
CKOPOCTb NOcTa. PesyIbTarhl aHAAH3A XOPOUIO COTSIACYIOTCS ¢ HMOIONUMIICH B JIHTEpaType
HRCTIEPUMEHTATLHBIMN TAHHEIM,



