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Abstract-A theoretical analysis of vapor bubble growth in a uniformly superheated liquid has been 
carried out to determine the effects of translational motion of the bubble on the bubble growth rate. 
Assuming potential flow in the region surrounding the bubble the appropriate convective diffusion 
equation is solved by means of a new similarity transformation. The results of the theoretical analysis 
are compared with available experimental data and with analyses of the limiting cases of no bubble transla- 
tion and quasi steady state bubble growth. The analysis is shown to reduce to the Plesset and Zwick or 
Striven analysis for stationary growing bubbles. The effects of translation are found to be significant 
when the translational velocity is sufficiently high at moderate Jakob numbers, but for high Jakob num- 
bers radial convection predominates and translation has little effect on the growth rates. The analysis 

predicts results in good agreement with experimental data available in the literature. 

NOMENCLATURE 

coef!icient in equation (33) ; 
= iJ,/R, variable in several equa- 
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radial position [cm] ; 
bubble radius [cm] ; 
dummy variable of integration ; 
time [s] ; 
temperature [“Cl ; 
= 3 U ,t/2R, dimensionless time ; 
radial velocity [cm/s] ; 
tangential velocity [cm/s] ; 
translational velocity of center of 
bubble [cm/s] ; 

k 

NJ,, 
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[dimensionless] ‘; ’ 
= 2hR/k, Nusselt number [dimen- 
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Y, distance from bubble surface [cm]. 

Greek letters 

28’9 

thermal diffusivity [cm’/s] ; 
growth constants ; 

4 thermal boundary layer thickness 
[cm1 ; 

4 = d2, variable in several equations 
[cm21 ; 

;J: 
similarity variable ; 
angle [radians] ; 
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heat of vaporization [calg] ; 
kinematic viscosity [cm2js] ; 
dummy variable of integration ; 
density [g/cm31 ; 
surface tension [dynes/cm] ; 
time [s] : 
function defined by equation (24); 
function in equation (34) and tabu- 
lated in [ll]. 

Subscripts 
refers to the liquid phase ; 
refers to a saturation condition ; 
refers to an initial condition ; 
refers to the vapor phase ; 
refers to a value at great distance 
from the bubble. 

INTRODUCTION 

PROBLEMS of bubble growth in a superheated (or 
supersaturated) liquid, for the case involving no 
translational motion of the center of the fluid 
sphere relative to the surrounding continuous 
phase, have been studied by Plesset and Zwick 
[1,2],ForsterandZuber [3],Scriven [4],Barlow 
and Langlois [5] and Waldman and Houghton 
[6]. In 1966 Goodrich [7] provided yet another 
analysis of the phase growth problem, and 
Bankoff [8] analyzed and reviewed the literature 
related to these problems. It can be concluded 
that diffusion-controlled bubble and droplet 
growth is reasonably well treated provided that 
the spherical fluid mass does not undergo 
translation. 

As indicated by Sideman’s summary [9] of 
transfer coefficient equations for moving but 
nongrowing droplets a considerable amount of 
work has been done related to constant volume 
drops. Most of the research on transfer co- 
efficients for the region outside of a drop of 
constant size is restricted to steady state condi- 
tions, but Ruckenstein [lo] proposed a method, 
based on a new similarity transformation, for 
the analysis of some problems of heat or mass 
transfer under unsteady conditions. The method 

was applied to a moving fluid spherical bubble 
of constant size by Ruckenstein [ 111, and 
Ruckenstein and Constantinescu [ 121 applied 
it to solve the problem of mass transfer to a drop 
growing at the tip of a capillary tube through 
which liquid is fed to the drop. 

Perhaps the first attempt at a fundamental 
analysis of the problem of simultaneous transla- 
tion and diffusion-controlled bubble growth or 
collapse is that of Tokuda et al. [ 131. Using a 
potential flow model for the flow field around 
the bubble lhey developed small-time and large- 
time expressions for the growth rate which they 
solved numerically to obtain the radius as a 
function of time. They found that translation 
greatly increases growth rates over those pre- 
dicted for stationary growing bubbles. 

It is the purpose of the present paper to show 
that a similarity transformation of the type 
proposed in [lo] and [ll] may be useful in the 
analysis of diffusion-controlled moving bubble 
growth. 

PROBLEM FORMULATION 

We shall consider the growth of a translating 
spherical vapor bubble in a single-component 
uniformly superheated liquid of great extent 
compared with the volume of the bubble. When 
a vapor bubble is generated at a heated wall, 
such as occurs in nucleate boiling, simultaneous 
translation and growth (or collapse) occur after 
the bubble departs. Vapor bubble growth arising 
from homogeneous nucleation has been studied 
by Dergarabedian [ 141, Hooper and Abdel- 
messih [ 151, Kosky [ 161 and Florschuetz et al. 
[ 171. Dergarabedian generated vapor bubbles 
in the bulk of slightly superheated water by 
infrared heating, and the latter investigators 
generated bubbles by suddenly reducing the 
pressure on water initially at a uniform tempera- 
ture. All of these investigators reported bubble 
radii as a function of time and were primarily 
interested in radial growth rates. With the 
exception of Florschuetz et al. the authors 
largely ignored the possible effects of translation 
in their interpretation and analysis, but because 
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of the buoyant force acting on a bubble transla- of the region in which all appreciable variation 
tion occurs if the bubble is not attached to a of temperature occurs is small and equation (1) 
solid surface of support. may be approximated by 

The experiments of Florschuetz et al. were 
designed to assess the effects of translation on 
the growth rates of free vapor bubbles in uni- 
formly superheated liquids. Using a drop tower 
they made measurements under zero gravity 
conditions as well as under normal conditions. 
Their results clearly indicate that bubble transla- 
tion has an appreciable effect on growth rates. 

-+udT+U,T=~d2T aT 

at r ar r ae a? . 
(2) 

The boundary conditions and the initial 
condition are 

(i) T = T, as r + IX 
(ii) T = T, at r=R 

(iii) T = T, at t = 0 
Darby [ 181 measured vapor bubble growth 

rates for moving bubbles following detachment 
after heterogeneous nucleation on a solid surface. 
As in Dergarabedian’s study superheated liquid 
was maintained by infrared heating. The data 
show some evidence that translation increases 
the growth rate. and Darby correlated his data 
for water and Freon 113 by means of an empirical 
equation. 

Boundary condition (ii) arises by assuming that 
the interior of the bubble is at the saturation 
temperature. 

If the center of the bubble moves at velocity 
U, relative to stationary coordinates and the 
flow field around the bubble is approximated by 
potential flow, the velocity components are 
given by 

It should be noted that, except for the large 
vapor slugs developed at large times in Kosky’s 
experiments and for some of the larger bubbles 
in the normal condition runs of Florschuetz and 
his coworkers, spherical bubbles were involved 
in all of the experimental investigations. 

u,=-u, 1-F cosB+$~ 
( > 

(3) 

If it is assumed that at time t = 0 a spherical 
vapor bubble is either injected into a uniformly 
superheated liquid or begins to grow in the 
liquid due to a sudden decrease of pressure on 
the system, then rises through the superheated 
liquid, the temperature field around the bubble 
satisfies the energy equation 

ug= U, l+$ sine. 
( ) 

(4) 

Since we are interested in the temperature 
distribution in the region near the bubble surface, 
i.e. y + R where y = r - R, the velocity com- 
ponents in this region can be approximated by 
expanding the radius-dependent terms in y/R 
to give, for small y/R 

u,= -3U,5osB+$ (5) 

1 a ( > 2aT =a-pa,r~. (1) 

The temperature field is considered to be 
axisymmetric and molecular conduction in the 
direction tangent to the bubble surface is 
assumed to be negligible compared with the 
convective transport in that direction. For 
sufficiently large PC&t numbers the thickness 

u* 3u -_=_A 
2R 

sin 8. 
r 

Introducing these velocity expressions in the 
convective diffusion equation, equation (2), one 
obtains 

g+ K > 1-g g-3U,~cos6 g 1 
3 u, . aT a2T 

+ 2RslnOa8 = uarz. (7) 
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In addition to the boundary conditions and 
the initial condition discussed above the radius 
must satisfy the relation between the bubble wall 
velocity dR/dt and the rate of heat transfer to the 
bubble obtained by writing an energy balance 
on the bubble surface, i.e. 

sin 8 d0 (8) 

with initial condition R = R, at t = to. 

SOLUTION 

Introducing new variables y = r - R and 
5 = t, equation (7) transforms to 

dT 
aZ-y 

3 aT a2T 
+2AsineS= aayi (9) 

where A = A(z) = U,(R)/R. It is assumed that Equation (12) can be solved by using the 
the bubble rise velocity U, is a function only method of characteristics. The characteristic 
of the bubble radius and the physical properties system of equations which may be attached to it 
of the system. is 

Equation (9) can be solved by the method 
proposed by Ruckenstein [lo], introducing the 
similarity variable 

dz d9 ds 
------= 

- - f A sin 0 1 4u - (6 Aces 0 + 4B)c’ 
(14) 

rl = Yis(e, r) 

and assuming that T = T(q). Equation (9) 
transforms to 

The pair of equations obtained from the 
characteristic system is 

;A(r)dt =$ (15) 2 

ad + 

dv2 

qE 
drj ( 

2 

% + 3 A62cos0 
2 aT 

+286’+~AsinO$ =0 
> 

(10) 

where 
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following equations that must be solved to 
obtain the temperature distribution. 

d2T 
7+29=0 
drl drl 

and 

a& 
az + (6 A cos 8 + 4B)c 

(11) 

+ iAsinOg= 4c( (12) 

where& = 6’. 

The boundary conditions become 

(i) T = T, as q + CO 
(ii) T = T, at rj = 0. 

The well-known solution of equation (11) is 

T-T 
2 = erfc [y/6(8, z)] . 
T, - Tm 

(13) 

BdqT)+g. 

and 

; [6A(r) cos 8 + 4B(z)]s = 41x. (16) 

The solution of equation (15) is 

r 

C, + 
s 

A(s) ds = 5 In tan (012). (17) 
If the temperature is to be a function of r~ only, 
the term in brackets in equation (10) can be set To solve equation (16) it is first necessary to 
equal to a constant. A convenient choice of the express cos 8 as a function of r and C, by means 
constant is 2u and this choice leads to the of equation (17). This is done by using the 
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trigonometric identity 

cos e = 1 - tan2 UW) 
1 + tan2 (012) 

(18) 

and by eliminating tan tIj2 between equations (17) and (18). Substituting the resulting expression 
for cos 6, in equation (16) and integrating one obtains. 

E exp 
1 - exp [3C, + 3*A(s)ds] F + 4B(5) d5 = 

1 + exp [3C, + 3, A(s)ds] F 
1 I 

1 - exp [3C1 + 3. A(s)ds] ‘i 

1 + exp [3C, + 3iA(s)ds] 

dp. (19) 

The general solution of equation (12) has the form C2 = F(C,). Consequently we can rewrite 
equation (19) using equations (17) and (18) to give 

T 

N 
6AK) 

1 - (tan20/2)exp (3 ; A(s)ds) s 
E exp 

1 + (tan28/2)exp (3 ; A(s)ds) T: 

+ 4W) Ii d< - 

T P 1 - (tan28j2)exp (3 ; A(s)ds) f 

1 + (tan20/2)exp (3 ; A(s)ds) f 

+ 4B(5) dr dp = 1 I 
F(j In tan 812 - .[ A(s)ds). (20) 

The form of the function F will be determined by using the initial condition, E = 0 at r = 0. This 
yields 

F(j In tan 8/2 - p A(s)ds) = 

0 P 1 -(tan28/2)exp (3 i A(s)ds) 

F 

+ 4W) I> d5 dp. (21) 
1 +(tan20/2)exp (3 ‘o A(+) 

F(j In tan ($2 - 5 A(s)ds) = 
0 P 

1 -(tan20/2)exp (3 f A(s)ds) 

f 

+ 4B(5) d5 dp (22) 
1 + (tan2&2)exp (3 ; A(s)ds) 1 I 
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where 

1 - (tan28/2)exp (3 A(s)ds) +(@ 5, z) = 6A(5) 1 

1 +(tan28j2)exp (3 j A(+) 
+ 4K). (24) 

Thus the bubble growth rate dR/dz can be then 
obtained from the energy balance, equation (8), 
by differentiating equation (13), evaluating the 

dR s( 
-_= 

pJ( ) 
_ 

temperature gradient at I = R and substituting dz z . (29) 

the result in equation (8) to give 
Since U, = 0 we have A(z) = 0, and B(z) = l/z. 

I 
Equation (25) can then be integrated analyti- 

6’5) tally to give the result obtained by Plesset 
and Zwick and by Striven : 

where the Jakob number iJn is defined by 

(30) 

A Pv 

and ~(8,r) is given by equation (23). 
Integrating equation (25) one obtains the 

from which one obtains the Plesset and Zwick 

equation for the bubble radius as a function of 
value of the growth constant 

time B = J(3iX) N,. (31) 

R(z) = R, + 2 
*II 

sin 9 d6 
dt. (27) 

1 - (tan28i2)exp (3 5 + i A(s)ds) 
0 * 1 + (tan28i2)exp (3 5 A(s)ds) 

+ 4W) III d5 dp 

Equation (27) reduces to a much simpler and It should be pointed out that when the initial 
well-known result when U, = 0 and R, = 0. radius is nonzero owing to the nonlinear 
In this case Striven’s method of solution can be character of the integral equation (27), the 
used to determine the bubble radius and the solution of the equation does not have the 
growth rate dR/dz analytically. Assuming form suggested by intuition, 

R = W&z), (28) R = R, + 2/Y&z). (32) 
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Another type of solution, differing from that of and about the relative importance of translation 
&riven, must be found. Indeed, using equation compared with radial motion can be obtained 
(32) for evaluating the integral in equation (25) from equations (23) and (24). The thermal 
one obtains boundary layer thickness decreases as the 

where a = R,/2F&a). Equation (33) invali- 
dates the original assumption that /3’ = con- 
stant, except for very large times, for which the 
equation reduces to /I’ = N&3/x). 

When U, # 0 the functions A(<) and 45) 
which are functions of the bubble radius, depend 
upon time in an unknown manner, so a numeri- 
cal method is required to solve the nonlinear 
integral equation, equation (27). An iterative 
procedure involving a method of successive 
approximations was used to solve the equation. 
To obtain trial values of the radius for the 
iterative numerical solution the approximation, 

R = R, + 2N,,J(3uz/n), 

was used to begin computations. For later times 
(after the first few time increments) rapid con- 
vergence of the iteration scheme was achieved 
by obtaining trial values of R for each new time 
increment by linear extrapolation of the values 
from two previously calculated increments. 
Simpson’s rule was used in the numerical 
integration schemes, and the effects of the sizes 
of the time increment and the angle increment 
were established. Solutions were found to be 
quite insensitive to the size of the angle incre- 
ment, but because of the multiple integrals 
involved (with respect to time) the time incre- 
ments required for accuracy and stability of 
the calculations were of the order of 10’ 5-10-4 
s for the results discussed below. 

LIMITING CASES 

Qualitative information about the time- 
dependent thermal boundary layer thickness 

function #& 5, r), defined by equation (24) 
as the sum of translational and radial convection 
terms, increases. The radial growth is a function 
of the Jakob number and the translational 
convection can be associated with a PC&t 
number (Npe = 3R U, 2~). An increase in either 
of these terms will produce a thinning of the 
thermal boundary layer. 

If 

445) + 6A(5) 

1 - exp[3 i A(s)ds]tan’0/2 

1 + exp[3fA(s)ds]tan20/2’ 

the effects of translation are insignificant, and 
radial transport of heat predominates. Provided 
that the Jakob number (and. therefore, the 
growth rate) is sufficiently large that the thin 
thermal boundary layer assumption is valid, the 
solution reduces to that of Plesset and Zwick 
as shown above. 

When the translational convection term and 
the radial convection term of 4(&t, z) are of 
the same order both modes of convection are 
important, and the numerical solution discussed 
above must be used to compute the results. 

Tokuda, Yang and Clark came to the same 
qualitative conclusions about the thickness of 
the thermal boundary layer and the importance 
of axial versus radial convection. By writing 
the energy equation in a dimensionless form they 
showed that the thickness of the time-dependent 
thermal boundary layer depends upon the 
Jakob number and the P6clCt number, and they 
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showed that when N, is of the order of Nge both 
radial and axial convection terms are significant. 
They proceeded to solve the original energy 
equation by a perturbation technique and 
obtained numerical results. 

A third possibility exists concerning the rela- 
tive magnitudes of the translational and radial 
convection terms. When 

1 - exp[31Js)ds]tanZ0i2 

% 4B(<), i.e. when N,, b N,,, 

translational effects predominate, and the heat 
flux at each moment should be given by that for 
heat transfer to a bubble of constant size. pro- 
vided that c#J(& l, z) is sufficiently large that the 
thin thermal boundary layer approximation is 
valid. The growth rate should then be obtainable 
by quasi steady state methods. 

where o is a function of time and radius as 
indicated above. If the translational velocity 
is specified as a function of the radius, equation 
(37) can be integrated numerically to give the 
time-dependent radius. 

THE TRANSLATIONAL VELOCITY 

THE QUASI STEADY STATE APPROXIMATION 
If it is assumed that at each moment of time 

the heat transfer coefficient is given by expres- 
sions valid for the corresponding constant 
radius moving bubble, the heat transfer rate 
may be obtained from previously developed 
expressions [ll]. For potential flow around a 
constant size bubble the Nusselt number is 
given by 

N,, = (N,,,@w(T*) (34) 

where the Nusselt number is defined by 
N,, = 2hR/k, the heat transfer coefficient h is 
defined in terms of the average heat flux 4 over 
the bubble surface, i.e. h = q/(T, - T,), and 
MT*) is a time-dependent function calculated 
in [ 111. The PC&t number and the dimen- 
sionless time T* are given by 

N,, = 3 RU,jM and T* = 3 tU ,R cd . 

For T* g 1, w(T*) = 4/J(3) and equation (34) 
becomes 

In the above analyses the translational velocity 
is considered to be a function of the radius, but 
no particular form of that functional relation- 
ship has been specified. Any appropriate equa- 
tion for the translational velocity or even 
experimental data can be used in the numerical 
solutions of equations (27) and (37). Three 
different approaches are used for the calcula- 
tions discussed below(i) a constant translational 
velocity, (ii) experimental data and (iii) velocities 
calculated for each point in time from well- 
known expressions that rigorously apply to 
nongrowing bubbles. In the latter case the 
inertial terms that are ignored are probably 
significant during a small-time period when the 
bubbles grow most rapidly, but for simplicity 
this complication is not taken into account 
here. 

Levich [19] analyzed the drag on a spherical 
bubble. The analysis, which has recently been 
extended by Harper and Moore [20], applies to 
the motion of a constant radius bubble in an 
uncontaminated liquid for bubble Reynolds 
numbers greater than about 100. For bubbles 
larger than approximately 0.04 cm, however, 
Levich’s equation, 

N,, = 4(Np,i371)‘. (35) U, = gR2/9v. (38) 

The bubble growth rate is obtained from an 
energy balance on the bubble. 

;(y&R3) = 4nR’h(T, - 7;). (36) 

For constant vapor density and constant heat 
of vaporization the growth rate equation be- 
comes 

_=_ w(T*) (37) 
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predicts bubble rise velocities that are too high 
compared with experimental data. A better 
expression for larger bubbles is that of Mendel- 
son [21], 

u, = (j&+@)‘, (39) 

which Cole [22] has shown to be in reasonable 
agreement with experimental data for steam 
and organic vapor bubbles under nucleate 
boiling conditions. 

RESULTS 

Quantitative information about the relative 
importance of translation compared with radial 
motion was obtained by making a parametric 
study of the solution of equation (27). Figure 1 

08 

---- Plesset and Zwick equation, 

07 Present analysis 
- U,=O (no translation) 

06 --- &=30 cm/s 

---- L&= 50 cm/s 

05 

E 
0 

_. 04 

1 
B 

a 03 

02 

10 20 30 

Time, ms 

FIG. 1. The results of a parametric study of equation (27) 
for water at 2 atm pressure. 

shows the results of such a study for various 
Jakob numbers and various constant transla- 
tional velocities including the case of no 
translation. The physical properties used in the 
calculations correspond to steam and water at 

a pressure of 2 atmospheres, and an initial 
radius of 0057 cm, the departure diameter for 
steam bubbles from a solid surface at this pres- 
sure. is assumed. The Plesset and Zwick or 
&riven asymptotic solution for stationary 
bubbles. equation (28). (which we shall refer to as 
the PZS solution) is plotted for the three Jakob 
numbers shown. The other limit, quasi steady 
state growth, is also shown on Fig. 1. 

For large Jakob numbers (N,, > 50) and at 
small times even relatively large translational 
velocities (U * = 50 cm/s) have little effect on the 
growth rate because radial convection pre- 
dominates. The PZS solution is in good agree- 
ment with the solutions for large Jakob num- 
bers even though the initial radius was taken as 
finite for the solution of equation (27). It is not 
surprising that the quasi steady state approxi- 
mation predicts lower growth rates for 
U, = 50 cm/s and N,, = 50 than either equa- 
tions (27) or (28), for the growth is dominated 
by radial convection and translation is only 
slightly significant in the time range shown in 
Fig. 1. 

The quasi steady state approximation is in 
good agreement with the results of equation 
(27) for U, = 50 cm/s and N,, = 30. For these 
conditions translational convection predomin- 
ates. Again the PZS result is in good agreement 
with the numerical solution of equation (27) 
for the case of no translation. 

The predicted growth curves for N,, = 10 
show a strong effect of translation, but the 
quasi steady state solution for U, = 50 cm/s 
and the results of equation (27) for that velocity 
are not in agreement. Furthermore, because of 
the relatively large initial radius the results 
of equation (28), which applies only for zero 
initial radius, are not in agreement with those of 
equation (27). 

Some caution must be exercised in applying 
the present analysis to low Jakob numbers, for 
the assumption of a thin thermal boundary 
layer is questionable if the translational velocity 
is also low. To examine this point sample results 
for the function &/4a from equation (23) corres- 
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point, so the thin thermal boundary layer 
assumption is valid in this region, but at the rear 
stagnation point 6 quickly becomes large. For 
larger translational velocities with N,, = 10 
the thickening of the thermal boundary layer 
is less pronounced, but near 8 = n the validity 
of the analysis is questionable. Even at higher 
Jakob numbers 6 is large in the vicinity of 0 = 71, 
but this region has very little effect on the solu- 
tion as seen by examination of the integrand in 
equation (27). 

0 77/Z 71 

Angle, radians 

FIG. 2. The behavior of the thermal boundary layer thickness 
for low Jakob number and low velocity. 

ponding to the parametric studies of Fig. 1 are 
shown in Fig. 2 for a combination of low Jakob 
number and low translational velocity. Even at 
small times the thermal boundary layer in the 
rear half of the bubble is relatively large for 
this extreme case. For the range of times shown 
in the figure 6/R < 0.04 at the front stagnation 

It is possible to obtain some information on 
the usefulness of the present analysis for low 
Jakob number systems by comparing it with 
available experimental data. The data available 
for simultaneously growing and translating 
bubbles are in the low Jakob number range 
(3 < N,, < 10). Darby provided data on both 
the bubble radius as a function of time and the 
position of the bubble as a function of time. 
As the bubbles were nucleated on a solid surface 
the experimental growth data prior to bubble 
departure do not agree with the PZS solutron. 
The results for two of Darby’s runs are shown 
in Figs. 3 and 4, and the growth curves predicted 

FIG. 4. A comparison of the present analysis with typical 
data of Darby for Freon 113. 

Time, set 

data of Darby for water. 

from equation (27) are plotted on the figures. 
The translational velocities used were those 
obtained by curve-fitting the appropriate experi- 
mental data. The data for water, Fig. 3. show 

FIG. 3. A comparison of the present analysis with typical 
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some effect of translation on the growth, but 
the predictions from equation (27) deviate only 
slightly from the PZS solution for stationary 
growing bubbles. For Freon 113 the data show 
(Fig. 4) little effect of translation and the results 
predicted using equation (27) are nearly 
indistinguishable from the PZS results. 

The data of Florschuetz et al. are better 
suited for comparison with the present analysis, 
for their work involved homogeneous nucleation 
in the bulk of a superheated liquid, so the 
effects of solid boundaries and bubble departure 
are absent. Unfortunately they did not supply 
information on the bubble translational veloci- 
ties as a function of time or of bubble radius, so 
some conjecture about these velocities must be 
made. They reported that the translational 
velocities were in the range from 0 to 40 cm/s, 
and therefore any assumptions made about the 
translation must be consistent with the upper 
limit of 40 cm/s. 

FIG. 5. A comparison of theoretical analyses with data for 
water. 

Figure 5 shows a comparison among the 
results predicted with the present analysis (with 
two different policies for calculating the transla- 
tional velocity), the PZS analysis and experi- 
mental data for steam bubbles of Florschuetz 
et al. If equations (38) and (39) are used to 
predict U, over the entire range of bubble sizes 
the growth rate, Curve B, is considerably 
overpredicted. It is likely that the calculated 

velocities are much too high in the early phase 
of bubble growth. An alternate policy was to 
assume that translation was not significant up 
to a radius of O-12 cm, and after that point U, 
was calculated from equation (39). The result, 
Curve C, is in reasonably good agreement with 
the experimental data and the calculated veloci- 
ties are in the range observed by Florschuetz 
and his associates. Significant deviation from 
the predictions for no translation, Curve A, 
occurs. 

Parametric studies based on the conditions 
of Florschuetz et al. indicate that it is the velocity 
attained after the first 20 or 30 ms that has an 
appreciable effect on the bubble growth. Pro- 
vided that the velocities calculated for the 
smaller bubbles are not too large translation 
has no effect on bubble growth at small times 
(t < 20 ms). Furthermore, translational veloci- 
ties less than about 20 cm/s have little effect 
on the bubble growth at large times. 

-IN 
10 

cl2 - Present theory U,= 30 cm/s 

FIG. 6. A comparison of the present analysis with data for 
water. 

Figures 6-8 compare experimental data for 
water, ethanol and isopropanol, respectively, 
with predictions made using a constant transla- 
tional velocity of 30 cm/s in equation (27) for 
t > 10 ms. The results of the PZS solution for 
no translation are also plotted on the figures. 
The velocity of 30 cm/s is well within the range of 
translational velocities reported by the investi- 
gators. The predictions are in reasonably good 
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Time, ms 

FIG. 7. A comparison of the present analysis with data for 
ethanol. 

agreement with the experimental data for all 
three systems, and the deviations from the 
theory for stationary phase growth are correctly 
predicted. Similar results are obtained using 
equation (39) to predict the translational 
velocities after the first 10 ms. 

To use the present analysis as a reliable 
predictive theory it is necessary to have better 
methods of predicting the translational velocity 
of growing bubbles, but Mendelson’s equation, 
equation (39), appears to be satisfactory for 
larger bubbles. 

convective diffusion equation. For sufficiently 
large Jakob numbers (N, > 50) bubble growth 
is not greatly affected by translation, for radial 
convection predominates. For moderate Jakob 
numbers translation can substantially increase 
bubble growth rates over the rates predicted 
for stationary bubble growth, for both tFansla- 
tional and radial convection are important at 
moderate translational velocities. If the velocity 
of translation is sufficiently large bubble growth 
characteristics can be predicted by quasi steady 
state methods, and in the limit of no translation 
and small initial bubble radius the new solution 

reduces to the Plesset and Zwick or Striven 
solution for diffusion-controlled phase growth. 
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LES EFFETS DE TRANSLATION DE BULLE SUR LA CROISSANCE DE BULLES DE 
VAPEUR DANS UN LIQUIDE SURCHAUFFE 

Resume-Une analyse thtorique de la croissance de bulle de vapeur dans un liquide uniformement 
surchauffe a Ctt menbe pour determiner les effets de mouvement de translation de la bulle sur sa vitesse de 
croissance. En supposant un ecoulement potentiel dam la region voisine de la bulle, l’tquation appropriee 
de diffusion convective est rtsolue a I’aid d’une nouvelle transformation de similitude. Les resultats de 
l’analyse theorique sent compares aux resultats experimentaux utilisables et aux analyses des cas limites 
de non-translation de la bulle et de croissance de la bulle en &at quasi-stationnaire. On montre que I’analyse 
se reduit a c&es de Plesset et Zwick ou Striven pouhdes bulles croissant statioRnairement. On montre que 
les effets de translation sont signigcatifs quand la vitesse de translation est suffisamment grande pour des 
nombres de Jakob mod&s mais pour des nombres de Jakob eleves la convection radiale predomine, et la 
translation a peu d’effet sur les vitesses de croissance. L’analyse predit des resultats en bon accord avec 

ceux experimentaux utilisables dans la litttrature. 

DIE EFFEKTE DER TRANSLATIONSBEWEGUNG DER BLASEN AUF DAS 
DAMPFBLAsENWA~HSTUM IN EINER OBERHITZTEN FLOSSJGKEIT 

Zusammenfassung-Eine theoretische Ableitung des Dampfblasenwachstums in einer iiberhitzten Fliis- 
sigkeit ist durchgeftihrt worden, urn die Einfliisse der Translationsbewegung der Blasen auf die Blasen- 
wachstumsraten zu bestimmen. Unter der Annahme einer Potentialstr~mung in der Umgebung der Blase 
wird die zugehorige konvektive Diffusionsgleichung mit Hilfe einer neuen ~hnlic~eitstransformation 
gel&t. Die Ergebnisse der theorerischen Ableitung werden mit den vorhandenen experimentellen Daten 
und mit den Ableitungen der Grenzfalle nlmlich keine Blasentranslation und quasistationares Blasen- 
wachstum verglichen. Die Ableitung llsst sich auf die von Plesset und Zwick oder Striven angegebene 
Analyse fiir das station&e Blasenwachstum zuriickfiihren. Die Einfliisse der Translation sind bedeutend, 
wenn die Translationsgeschwindigkeit bei mittleren Jakob-Zahlen gross ist; bei grossen Jakob-Zahlen 
iiberwiegt jedoch die radiale Konvektion und die Translation hat nur einen geringen Einfluss auf die 
Wachstumsraten. Die Ableitun8 liefert Ergebnisse von guter ~bereinstimmung mit den vorhandenen 

experimentellen Daten aus der Literatur. 

BJJMRHME fIOCTYiIATEJJbHOI’0 &BkI?KEHBR LIY3bIPbICOB JIAPA II.4 
MX POCT B nEPErPET0~ ~~~~OCT~ 

;liHeOTaqurJr-~pOBORElTCRTeOpoTlseCKU~ aHBJM3 POCTB IIapOBbIX lIy3blpbKOB B PaBHOMepHO 

neperperoti H~HAK~CTM c uenbm onpegenemn B~I~~HHHR nocTynaTenbHor0 ~BimeHafl 

Ity3bIpbKOB Ha CKOpOCTb liX pOCT3. COOTBeTCTByIoJl(He yp3BHeHMH KOHBeKTABHOti ~H@$Iy3AII 
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peuIamcf4 c non~oqbro IlOBOI‘O ilBT0~lO~eAb11OrO IIpeO~pa:~OBallllH npll ~011y~u~ll11 0 

Cy~eCTBOBaHHH IIOTeII~llaJIbHOI'OIIOTOHa BCiuW3JI IIy3bIpbHa. Pe3)-J,bTaTbI TeO~eTIVIeCKOIYI 

aHaJIll3a CpaBHLIBaIOTCR C OIIy&IIJKOBaHHbIM~I 3liCIIepCIMeIlTaJIbHbIMIl ~aHHbIIYII. a TaK%ie (' 

aIIamTwIecIm~iII penrernmm nn~l npenenbmx cnysaeB ~TC~TCTBLIR ~ImHiemIn ny:shipbm II 

I~Ba3IlCTa~MOHapHOrO pocTa ngmpeii. Il0ria3aII0, qT0 gnfl cTaqlIoHapIlor0 poma nympeii 

aItanIr3 mfo~rr~cfl I< aIra.msy IIneCce &I IJBIilra mm CIipIlI%l~llkt. a'cTa~iounrlI0, 'IT0 mlInI11ie 

IIOCTYIlaTeUlbHOI-0 ~BElPKelIIlfY CJ'~eCTBWIIO. Itorna ero cwpocTb ;loCTaTovlIo 3e.mlEa npI~ 

phlepeIIIIbIx wcnax RHoGa; nplI 6onbmm me wmIax HHo6a q)e0C,.na~arT pa~ll:tabllafl 

ItorrBeri~~IfI, a nocTynaTexbfroe Amweme He OIZa3bIBReT 3IIa'illTCJIbHOI-0 I~JIllflllklR II3 

C"OpOCTb POrTa. Pe3jYIhTaThI aHaJIll3a XO['OIIIO COrJaCj?OTCfI (' IIMCKlIlIIIMIlCf1 n .llIITC~)aT~[W 


